skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kramer, Skyler T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background While genomic variations can provide valuable information for health care and ancestry, the privacy of individual genomic data must be protected. Thus, a secure environment is desirable for a human DNA database such that the total data are queryable but not directly accessible to involved parties (eg, data hosts and hospitals) and that the query results are learned only by the user or authorized party. Objective In this study, we provide efficient and secure computations on panels of single nucleotide polymorphisms (SNPs) from genomic sequences as computed under the following set operations: union, intersection, set difference, and symmetric difference. Methods Using these operations, we can compute similarity metrics, such as the Jaccard similarity, which could allow querying a DNA database to find the same person and genetic relatives securely. We analyzed various security paradigms and show metrics for the protocols under several security assumptions, such as semihonest, malicious with honest majority, and malicious with a malicious majority. Results We show that our methods can be used practically on realistically sized data. Specifically, we can compute the Jaccard similarity of two genomes when considering sets of SNPs, each with 400,000 SNPs, in 2.16 seconds with the assumption of a malicious adversary in an honest majority and 0.36 seconds under a semihonest model. Conclusions Our methods may help adopt trusted environments for hosting individual genomic data with end-to-end data security. 
    more » « less
  2. SUMMARY The first draft of the Arabidopsis genome was released more than 20 years ago and despite intensive molecular research, more than 30% of Arabidopsis genes remained uncharacterized or without an assigned function. This is in part due to gene redundancy within gene families or the essential nature of genes, where their deletion results in lethality (i.e., thedark genome). High‐throughput plant phenotyping (HTPP) offers an automated and unbiased approach to characterize subtle or transient phenotypes resulting from gene redundancy or inducible gene silencing; however, access to commercial HTPP platforms remains limited. Here we describe the design and implementation ofOPEN leaf, an open‐source phenotyping system with cloud connectivity and remote bilateral communication to facilitate data collection, sharing and processing.OPEN leaf, coupled with our SMART imaging processing pipeline was able to consistently document and quantify dynamic changes at the whole rosette level and leaf‐specific resolution when plants experienced changes in nutrient availability. Our data also demonstrate that VIS sensors remain underutilized and can be used in high‐throughput screens to identify and characterize previously unidentified phenotypes in a leaf‐specific time‐dependent manner. Moreover, the modular and open‐source design ofOPEN leafallows seamless integration of additional sensors based on users and experimental needs. 
    more » « less